MAXIMUM CLIQUE and MINIMUM CLIQUE PARTITION in Visibility Graphs
نویسندگان
چکیده
In an alternative approach to “characterizing” the graph class of visibility graphs of simple polygons, we study the problem of finding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that no polynomial time algorithm can achieve an approximation ratio of n 1/8− 4 for any > 0, unless NP = P . To demonstrate that allowing holes in the input polygons makes a major difference, we propose an O(n) algorithm for the maximum clique problem on visibility graphs for polygons without holes (other O(n) algorithms for this problem are already known [3,6,7]). Our algorithm also finds the maximum weight clique, if the polygon vertices are weighted. We then proceed to study the problem of partitioning the vertices of a visibility graph of a polygon into a minimum number of cliques. This problem is APX-hard for polygons without holes (i.e., there exists a constant γ > 0 such that no polynomial time algorithm can achieve an approximation ratio of 1 + γ). We present an approximation algorithm for the problem that achieves a logarithmic approximation ratio by iteratively applying the algorithm for finding maximum weighted cliques. Finally, we show that the problem of partitioning the vertices of a visibility graph of a polygon with holes cannot be approximated with a ratio of n 1/14−γ 4 for any γ > 0 by proposing a gap-preserving reduction. Thus, the presence of holes in the input polygons makes this partitioning problem provably harder.
منابع مشابه
Maximum Clique and Minimum
In an alternative approach to \characterizing" the graph class of visibility graphs of simple polygons, we study the problem of nding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that no ...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملNew results on upper domatic number of graphs
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...
متن کاملOn the complexity of edge-colored subgraph partitioning problems in network optimization
Network models allow one to deal with massive data sets using some standard concepts from graph theory. Understanding and investigating the structural properties of a certain data set is a crucial task in many practical applications of network optimization. Recently, labeled network optimization over colored graphs has been extensively studied. Given a (not necessarily properly) edge-colored gr...
متن کاملAlgorithms for Unipolar and Generalized Split Graphs
A graph G = (V,E) is a unipolar graph if there exits a partition V = V1 ∪ V2 such that, V1 is a clique and V2 induces the disjoint union of cliques. The complement-closed class of generalized split graphs are those graphs G such that either G or the complement of G is unipolar. Generalized split graphs are a large subclass of perfect graphs. In fact, it has been shown that almost all C5-free (a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000